Reduction of Healthcare Disparities with Market Competition: The Case of Cardiac Angiography in New Jersey

Academy Health Annual Research Meeting Tuesday June 5, 2007 Orlando, FL

> Derek DeLia, Ph.D. Joel Cantor, Sc.D. Amy Tiedeman, Ph.D. Cecilia Huang, Ph.D.

Acknowledgements

Funding from the AHRQ (#R01 HS 014191)

Comments & contributions from:

Marilyn Dahl

Emmanuel Noggoh

Linda Holmes

Mina Silberberg

Denise Davis

Louise Russell

Jeanette Rogowski

Michael Yedidia

Marsha Rosenthal

Background

- Extension of prior work on racial disparities in use of cardiac angiography (CA)
- NJ CON reform, 1996
 - Expand CA capacity
 - Expand access to CA for underserved populations
- Trend analysis ==> reform eliminated black-white CA disparity
- Mechanisms remain unknown

CA providers

1. Incumbents

Existed pre-reform

Full range of CA services

Large inner city hospitals

2. Low risk facilities

Created by 1996 reform

Patients @ low risk of complications

Outreach plans

Suburban

3. Graduates

Additional reform in 2001

LR can "graduate" to full service w/new CON

Theory: Incumbent behavior changes the CA disparity

New entrants

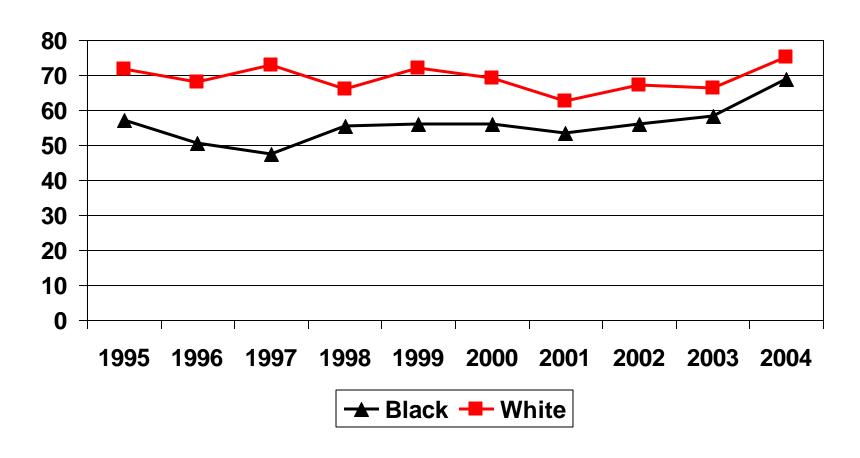
Small, suburban Outreach plans – pro forma, not enforced

Incumbents

Old CON rules ==> constrained capacity ==> excess demand ==> incentive & ability to emphasize service to "favored" patients (well-insured, white, suburban)

Some blacks may be well-insured & profitable Identification is costly

NJ reform ==> Expanded capacity ==> more options for whites ==> incumbents must focus on underserved


Testing the theory

- Hospital UB & U.S. Census data, 1995-2004
- Post reform = 1998-2004
- White CA rate minus black CA rate for NJ zip codes (per 10,000; age-sex adjusted, log form)
- Hospital choice set ==> CA providers by type: Incumbent, LR, graduate, NYC, Phila

$$Y_{it} = \alpha + \beta_1 L R_{it} + \beta_2 G R_{it} + \beta_3 I N_{it} + \beta_4 I N_{it} POST_{it} + \beta_5 HHI_{it} + \beta_6 TH_{it} + \beta_7 PH_{it} + \beta_8 NY_{it} + \beta_9 t + \varepsilon_{it}$$

- Theory: $\beta_3 > 0$, $\beta_3 + \beta_4 < \beta_3$
- Fixed effects models
- Sparsely populated zips ==> Weighted & non-weighted models

Average age-sex adjusted CA rate per 10,000 (Unit of analysis = zip code)

Sources: NJ Uniform Billing (UB-92) Records, U.S. Census Bureau

Model 1: Non-weighted observations

 $n = 5,953 R^2 = 0.32,$

Variable	Coefficient	P-value
Low risk	0.0013	0.04
Graduates	0.0013	0.27
Incumbents	_/ 0.0015 (= β ₃)	0.04
Incumbents, 98-04	$-0.0011(= \beta_4)$	0.02
ННІ	0.0006	0.87
Teaching	-0.0005	0.43
Phila CA	-0.0001	0.93
NYC CA	-0.0003	0.64
Time	-0.0001	0.87
Constant	8.4218	0.00

 $\beta_3 > 0$ $\beta_3 + \beta_4 = 0$ (Statistically)

Model 2: Observations weighted by combined black & white population

 $n = 5,493 R^2 = 0.40$

Variable	Coefficient	P-value
Low risk	0.0022	0.06
Graduates	0.0039	0.07
Incumbents	β_{1} 0.0032(= β_{3})	0.06
Incumbents, 98-04	$-0.0016(= \beta_4)$	0.04
ННІ	0.0170	0.04
Teaching	-0.0007	0.35
Phila CA	-0.0005	0.46
NYC CA /	-0.0003	0.63
Time	-0.0006	0.25
Constant	9.4941	<0.01

$$\beta_3 > 0$$

$$\beta_3 + \beta_4 = 0$$
 (Statistically)

Model 3: Observations weighted by black population only

 $n = 5,391 R^2 = 0.57$

Coefficient	P-value
0.0097	0.09
0.0182	0.08
$/$ 0.0091(= β_3)	0.02
-0.0086(= β ₄)	<0.01
0.0312	0.33
-0.0041	0.23
-0.0007	0.68
-0.0036	0.21
-0.0028	0.21
13.8434	<0.01
	0.0097 0.0182 0.0091(= β_3) -0.0086(= β_4) 0.0312 -0.0041 -0.0007 -0.0036 -0.0028

 $\beta_3 > 0$

 $\beta_3 + \beta_4 = 0$ (Statistically)

Summary

- Before reform, incumbent CA providers associated with larger disparities
- After reform, this association disappears
- Results are strongest when greater weight is given to areas w/large black populations
- Areas w/new CA facilities experienced no decrease in disparity
- Disparity reduction from change in incumbent behavior

Implications

- CON viewed as support for urban safety net hospitals
- Monopoly profits ==> cross subsidize underserved populations
- Findings imply the opposite ==> monopoly power used to favor certain types of CA patients
- Competition from new entrants ==> incentive to serve minorities
- Disparity reduction is positive
 Cost effectiveness
 - Inappropriate use
 - Health outcomes